

Securing Collaborative Environments

Deb Agarwal Keith Jackson and Mary Thompson

Distributed Systems Department Lawrence Berkeley National Laboratory

Collaborative Environment Properties

- Users
 - From a diverse set of organizations
 - Many are only occasional participants
 - Each individual needs to be able to participate from a diverse set of locations
 - Heterogeneous access requirements (network and compute platform)
- Composed of many software components
- Dynamic and static resources
- Access permissions dynamically changing
- Often form adhoc

Typical Security Requirements

- Limit participation to authorized people
- Specify and enforce participant access capabilities
- Single sign-on into environment
- Create and enforce authorization policy for dynamic components
- Dynamically change authorization policy
- Identify participant actions (particularly for auditing and logging)

Security Terminology/Mechanisms

- Authentication identify users
 - PKI Certificates
 - Attribute certificates
 - Username/password
- Authorization figure out what users are allowed to do
 - Access Control Lists
 - Authorization servers
 - policy
 - capability certificates
- Privacy
 - Private Network (virtual or actual)
 - Encryption
- Data integrity
 - Message Authentication Codes (hash)

Some Existing and Planned Tools

- Grid Security Infrastructure
 - myProxy
- Akenti
- CAS
- Secure Group Communication
- Existing technologies
 - Kerberos
 - SSL/TLS
 - Simple Authentication Security Layer
 - PGP

Grid Security Infrastructure (GSI)

- X.509 Public Key Infrastructure (PKI)-based identity certificates
 - Contains the public key issued and signed by a certificate authority
 - Used with the private key to provide authentication of users (SSL/TLS)
 - A defined set of certificate authorities are trusted to issue identity certificates
- Focuses on control of static resources accessed by a well defined set of users
- Authorization policy is controlled, administered, and enforced at the local resources
 - Grid-mapfile is used to map from identities to local authorization entities
 - Designed to control access to computers

GSI - Proxy Certificates

- Motivation
 - Processes need to be able to act on the user's behalf
 - Do not want to hand the process user's private key
 - Want to support single sign-on
- Proxy certificates derived from the user's identity certificate
- New credential
 - Stored locally unencrypted (no pass phrase)
 - Short-lived (~12-24hrs)
 - Created by calling grid-proxy-init
- Used by processes to act on the user's behalf

GSI - Proxy Service (myProxy)

Motivation

- Using proxy credentials requires having access to them
- Need somewhere to keep proxy credentials

• What is it

- Repository for proxy credentials
- Run on a secure (accessible) server machine

How does it work

- Stores proxy credentials protected by a password
- User can unlock using password rather than having a private key
- Provides proxy credential to processes on your behalf

An Example Use of myProxy

Advanced Collaborative Environments - GGF4

Akenti Authorization

- X.509 or proxy certificates identify user
- Policy is kept in distributed signed certificates
- Policy language allows for access by groups, individuals, possession of arbitrary attributes, runtime constraints such as time-of-day, IP address.
- Policy is written by stakeholders who are defined on a per-resource level.
- Authorization checks are done by a call from the resource gatekeeper to an Akenti server.

Akenti Status

- Used by the Diesel Combustion Collaboratory for control of Web and CORBA accessed resources.
- Will be used by the National Fusion Collaboratory for data access, and code execution access.
- Several tools are provided for the stakeholders to use when creating and viewing policy.
- All access requests to the Akenti server are logged for real-time display and to create an audit log.
- Distributions are available for RedHat Linux and Solaris platforms at http://www.itg.lbl.gov/Akenti

Secure Group Communication

- Secure reliable communication for collaborating groups spread across the Internet
 - simplify communication between components in distributed applications
 - security services similar to SSL/TLS
 - support confidentiality and data integrity
 - support access control based on membership authorization (individually enforced)
 - security services optional

Peer-to-Peer Model

- Allow ad-hoc and dynamic collaboration
- Remove centralized servers
 - scalable to large collaborations
 - remove bottleneck
- Better model for many collaborations no central authority
- Easy to add new resources to the collaboration
 - minimize setup required
 - allows local control over resource authorization

System Design

Secure Group Layer (SGL)

- Support dynamic membership
 - members join and leave the group at any time (e.g., network partitions and merges)
 - membership is not known in advance
- Achieve strong security goals
 - authenticated key exchange (AKE)
 - mutual authentication (MA)
 - forward secrecy (FS)
- Provide an SSL-like secure channel
- For more information http://www-itg.lbl.gov/CIF/GroupCom

What Does It Take To Do PKI

- PKI-based infrastructure
 - What infrastructure do I need to have
 - Certificate Authority/Registration authority designated entity(s) that verify identities, issues and stores certificates
 - Authorization capability from every resource
 - Authorization server + enforcer
 - Access Control Lists (ACL) + enforcer
 - Issues
 - Users have to manage private keys
 - Cross-domain authentication
 - Revocation
 - Authorization management
 - changes
 - Scalability
 - High infrastructure and trust threshold for entry

Password + PKI + Proxy

- Username/password
 - Provides new users with a means of quick access
 - Allows users to participate from untrusted sites
 - Support adhoc collaborations

PKI

- Support the core users and protect critical resources
- Proxy service
 - Provide PKI users with a way to use their PKI credentials via a password
 - Mechanism for single sign-on

Issues

- Unique identities
- Mechanisms to bootstrap environment
- What is the trust entity and how do you build trust incrementally

•

What Can We As ACE Do?

- Best practices document identifying methods of securing collaboratories (e.g.)
 - Deploying PKI-based collaborative software
 - Using proxies to secure collaborative software
- Identify missing capabilities
 - Dynamic authorization mechanisms
 - Incremental trust building mechanisms
 - Distributed certificate authorities (cross-organization trust)